Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267460

ABSTRACT

Background: Workers differ in their risk of SARS-CoV-2 infection according to their occupation, but the direct contribution of occupation to this relationship is unclear. This study aimed to investigate how infection risk differed across occupational groups in England and Wales up to October 2021, after adjustment for potential confounding and stratification by pandemic phase. Methods: Data from 12,182 employed/self-employed participants in the Virus Watch prospective cohort study were used to generate risk ratios for virologically- or serologically-confirmed SARS-CoV-2 infection using robust Poisson regression, adjusting for socio-demographic and health-related factors and non-work public activities. We calculated attributable fractions (AF) amongst the exposed for each occupational group based on adjusted risk ratios (aRR). Findings: Increased risk was seen in nurses (aRR=1.90 [1.40-2.40], AF=47%); doctors (1.74 [1.26-2.40], 42%); carers (2.18 [1.63-2.92], 54%); teachers (primary = 1.94 [1.44- 2.61], 48%; secondary =1.64, [1.23-2.17], 39%), and warehouse and process/plant workers (1.58 [1.20-2.09], 37%) compared to both office-based professional occupations (reported above) and all other occupations. Differential risk was apparent in the earlier phases (Feb 2020 - May 2021) and attenuated later (June - October 2021) for most groups, although teachers demonstrated persistently elevated risk. Interpretation: Occupational differentials in SARS-CoV-2 infection risk are robust to adjustment for socio-demographic, health-related, and activity-related potential confounders. Patterns of differential infection risk varied over time, and ongoing excess risk was observed in education professionals. Direct investigation into workplace factors underlying elevated risk and how these change over time is needed to inform occupational health interventions.


Subject(s)
COVID-19 , Disease Attributes
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.05.21265968

ABSTRACT

Background SARS-CoV-2 vaccines stimulate production of antibodies targeting the spike protein (anti-S). The level of antibodies following vaccination and trajectories of waning may differ between vaccines influencing the level of protection, how soon protection is reduced and, consequently the optimum timing of booster doses. Methods We measured SARS-CoV-2 anti-S titre in the context of seronegativity for SARS-CoV-2 anti-Nucleocapsid (anti-N), in samples collected between 1st July and 24th October 2021 in a subset of adults in the Virus Watch community cohort. We compared anti-S levels after BNT162b2 (BioNTech/Pfizer) or ChAdOx1 (AstraZeneca/Oxford) vaccination using time since second dose of vaccination, age, sex and clinical vulnerability to investigate antibody waning. To investigate the use of anti-S levels as a correlate of protection against SARS-CoV-2 infection, we undertook a survival analysis (Kaplan-Meier and Cox) with individuals entering 21 days after their second dose of vaccine, or first antibody test after 1st July (whichever was latest) and exiting with the outcome of SARS-Cov-2 infection or at the end of follow up 24th October 2021. We also undertook a negative test design case-control analysis of infections occurring after the second vaccine dose (breakthrough infections) to determine whether the type of vaccine affected the risk of becoming infected. Results 24049 samples from 8858 individuals (5549 who received a second dose of ChAdOx1 and 3205 BNT162b2) who remained anti-N negative were included in the analysis of anti-S waning over time. Three weeks after the second dose of vaccine BNT162b2 mean anti-S levels were 9039 (95%CI: 7946-10905) U/ml and ChadOx1 were 1025 (95%CI: 917-1146) U/ml. For both vaccines, waning anti-S levels followed a log linear decline from three weeks after the second dose of vaccination. At 20 weeks after the second dose of vaccine, the mean anti-S levels were 1521 (95%CI: 1432-1616) U/ml for BNT162b2 and 342 (95%CI: 322-365) U/ml for ChadOx1. We identified 197 breakthrough infections and found a reduced risk of infection post second dose of vaccine for individuals with anti-S levels greater than or equal to 500 U/ml compared to those with levels under 500 U/ml (HR 0.62; 95%CIs:0.44-0.87; p=0.007). Time to reach an anti-S threshold of 500 U/ml was estimated at 96 days for ChAdOx1 and 257 days for BNT162b2. We found an increased risk of a breakthrough infection for those who received the ChAdOx1 compared to those who received BNT162b2 (OR: 1.43, 95% CIs:1.18-1.73, p<0.001). Discussion Anti-S levels are substantially higher following the second dose of BNT162b2 compared to ChAdOx1. There is a log linear waning in levels for both vaccines following the second dose. Anti-S levels are an important correlate of protection as demonstrated by those with anti-S levels < 500U/ml following vaccination being at significantly greater risk of subsequent infection. Since anti-S levels are substantially lower in ChAdOx1 than in BNT162b2 and both decline at similar rates we would expect waning immunity to occur earlier in ChAdOx1 compared to BNT162b2. Our results showing an increased risk of breakthrough infections for those who were vaccinated with ChAdOx1 compared to BNT162b2 are in line with this hypothesis. Consistent with our data, national analyses of vaccine effectiveness also suggest that waning of immunity for infection and, to a lesser extent for severe disease, is seen earlier in ChAdOx1 than in BNT162b2. Our data demonstrate the importance of booster doses to maintain protection in the elderly and clinically vulnerable and suggest that these should be prioritised to those who received ChAdOx1 as their primary course.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.12.21257102

ABSTRACT

Background Vaccination constitutes the best long-term solution against Coronavirus Disease 2019 (COVID-19). Real-world immunogenicity data are sparse, particularly for ChAdOx1 and in populations with chronic conditions; and given the UK’s extended dosing interval, it is also important to understand antibody responses in SARS-CoV-2-naive individuals following a single dose. Methods Adults aged ≥18 years from households enrolled in Virus Watch, a prospective community cohort study in England and Wales, provided capillary blood samples and self-reported vaccination status. Primary outcome variables were quantitative Spike total antibody levels (U/ml) and seropositivity to Spike (≥0.8 U/ml), as per Roche’s Elecsys Anti-SARS-CoV-2 S assay. Samples seropositive for Nucleocapsid, and samples taken prior to vaccination, were excluded. Outcomes were analysed by days since vaccination, vaccine type (BNT162b2 and ChAdOx1), and a range of self-reported demographic and clinical factors. Results 8,837 vaccinated participants (median age 65 years [IQR: 58, 71]), contributed 17,160 samples (10,508 following ChAdOx1, 6,547 following BNT162b2). Seropositivity to Spike was 96.79% (95% CI 96.42, 97.12) from 28 days following a single dose, reaching 99.34% (98.91, 99.60) from 14 days after a second dose. Seropositivity rates, and Spike-antibody levels rose more quickly following the first dose of BNT162b2, however, were equivalent for both vaccines by 4 and 8 weeks, respectively. There was evidence for lower S-antibody levels with increasing age (p=0.0001). In partially vaccinated 65-79 year-olds, lower S-antibody levels were observed in men compared with women (26.50 vs 44.01 U/ml, p<0.0001), those with any chronic condition (33.8 vs 43.83 U/ml, p<0.0001), diabetes (22.46 vs 36.90 U/ml, p<0.0001), cardiovascular disease (32.9 vs 37.9 U/ml, p=0.0002), obesity (27.2 vs 37.42, p<0.0001), cancer diagnosis (31.39 vs 36.50 U/ml, p=0.0001), particularly those with haematological cancers (7.94 vs 32.50 U/ml, p<0.0001), and for those currently on statin therapy (30.03 vs 39.39, p<0.0001), or on any immunosuppressive therapy (28.7 vs 36.78 U/ml, p<0.0001), particularly those on oral steroids (16.8 vs 36.07, p<0.0001). Following a second dose, high S-antibody titres (≥250U/ml) were observed across all groups. Interpretation A single dose of either BNT162b2 or ChAdOx1 leads to high Spike seropositivity rates in SARS-CoV-2-naive individuals. Observed disparities in antibody levels by vaccine type, age, and comorbidities highlight the importance of ongoing non-pharmaceutical preventative measures for partially vaccinated adults, particularly those who are older and more clinically vulnerable; and high antibody levels across all groups following a second dose demonstrate the importance of complete vaccination. However, the relationship between Spike-antibody levels and protection against COVID-19, and thus the clinical significance of observed disparities, is not yet clear.


Subject(s)
COVID-19 , Obesity , Neoplasms , Cardiovascular Diseases
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.15.20248254

ABSTRACT

Introduction The Coronavirus (COVID-19) Pandemic has caused significant global mortality and impacted lives around the world. Virus Watch aims to provide evidence on which public health approaches are most likely to be effective in reducing transmission and impact of the virus, and will investigate community incidence, symptom profiles, and transmission of COVID-19 in relation to population movement and behaviours. Methods and analysis Virus Watch is a household community cohort study of acute respiratory infections in England & Wales and will run from June 2020 to August 2021. The study aims to recruit 50,000 people, including 12,500 from minority ethnic backgrounds, for an online survey cohort and monthly antibody testing using home finger prick kits. Nested within this larger study will be a sub-cohort of 10,000 individuals, including 3,000 people from minority ethnic backgrounds. This cohort of 10,000 people will have full blood serology taken between October 2020 and January 2021 and repeat serology between May 2021 and August 2021. Participants will also post self-administered nasal swabs for PCR assays of SARS-CoV-2 and will follow one of three different PCR testing schedules based upon symptoms. Ethics and dissemination This study has been approved by the Hampstead NHS Health Research Authority Ethics Committee. Ethics approval number – 20/HRA/2320. We are monitoring participant queries and using these to refine methodology where necessary, and are providing summaries and policy briefings of our preliminary findings to inform public health action by working through our partnerships with our study advisory group, Public Health England, NHS and Government Scientific Advisory panels. Strengths and limitations of this study Virus Watch is a large national household community cohort study of the occurrence and risk factors for COVID-19 infection that aims to recruit 50,000 people, including 12,500 from minority ethnic backgrounds. Virus Watch is designed to estimate incidence of PCR confirmed COVID-19 in those with respiratory and non-respiratory presentations and the incidence of hospitalisation among PCR confirmed COVID-19 cases. Virus Watch will measure effectiveness and impact of recommended COVID-19 control measures including testing, isolation, social distancing, respiratory and hand hygiene measures on risk of respiratory infection. Only households with a lead householder able to speak English were able to take part in the study up until March 2021. Only households of up to six people were eligible for inclusion and they were also required to have access to an internet connection. These restrictions will limit the generalisability to large or multigenerational households, and those without access to the internet.


Subject(s)
COVID-19 , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL